15 research outputs found

    Damage monitoring in sandwich beams by modal parameter shifts: a comparative study of burst random and sine dwell vibration testing

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of honeycomb sandwich beams, damaged by two different ways i.e., impact damage and core-only damage simulating damage due to bird or stone impact or due to mishandling during assembly and maintenance. The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and sine dwell testing in order to evaluate the damping estimation efficiency of these methods in the presence of damage. Sine dwell testing is done in both up and down frequency directions in order to detect structural non-linearities. Results show that damping ratio is a more sensitive parameter for damage detection than the natural frequency. Design of experiments (DOE) highlighted density of damage as the factor having a more significant effect on the modal parameters and also proved that sine dwell testing is more suitable for damping estimation in the presence of damage as compared to burst random testing

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety

    Damage localization using experimental modal parameters and topology optimization

    Get PDF
    This work focuses on the developement of a damage detection and localization tool using the Topology Optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiness loss and the change in modal parameters due to damages in structures. The loss in stiness is accounted by the Topology Optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for dierent levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been archieved for the localization of the damages by the Topology Optimization

    Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams

    Get PDF
    The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entangled sandwich beams are heavier than the honeycomb and foam sandwich beams, the vibration tests show that the entangled sandwich beams possess higher damping ratios and low vibratory levels as compared to honeycomb and foam sandwich beams, making them suitable for vibro-acoustic applications where structural strength is of secondary importance e.g., internal paneling of a helicopter

    Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams

    Get PDF
    The aim is to study the impact toughness of two types of entangled sandwich materials (heavy and light) with the help of vibration testing. A simple case of symmetrical impacts is studied in this article as no literature is available regarding impact tests on entangled sandwich materials. The variation of modal parameters with two levels of damage (BVID and Damage not apparent on the surface) is studied. Vibration test results show that the light entangled specimens possessing good damping capabilities seem more sensitive to impact damage than the heavy ones. Furthermore, damping is found to be more sensitive to damage than the stiffness variations, so it is reasonable to assume that damping may be used instead of natural frequency as a damage indicator tool for structural health monitoring purposes

    Topology optimization for robust damage localization using aggregated FRFs statistical criteria

    Get PDF
    This work focuses on the development of a damage localization tool using Topology Op- timization (TO) as a solver for the inverse problem of localization. This approach is based on the correlation of a local stiffness loss and the change in frequencies due to damages. We use the loss in stiffness for updating undamaged numerical models towards similar models with embedded damages. This work is an extension of past work and aims at increasing the detectability of the method using using aggregated Frequency Response Functions (FRFs) statistical criteria. Good results have finally been achieved for the localization of close damages by the Topology Optimization method

    Static and dynamic testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams

    Get PDF
    The aim of this study is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber as core and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. The vibration tests show that the entangled sandwich beams possess higher damping ratios and low vibratory levels as compared to honeycomb and foam sandwich beams, making them suitable for vibro-acoustic applications where structural strength is of secondary importance

    Evaluation of the impact resistance of various composite sandwich beams by vibration tests

    Get PDF
    Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio). This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores). Low velocity impacts are done below the barely visible impact damage (BVID) limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials

    Correlating low energy impact damage with changes in modal parameters: a preliminary study on composite beams

    Get PDF
    This paper is an experimental study of the effects of multi-site damage on the vibration response of a composite beam damaged by low energy impact. The variation of the modal parameters with different levels of impact energy and density of impact is studied. Specimens are impacted symmetrically in order to induce a global rate of damage. A damage detection tool Damage Index is introduced in order to verify the estimation of damping ratios. Design of Experiments is used to establish the sensitivity of both energy of impact and density of damage. The DOE analysis results (using natural frequency only) indicate that impact energy for 2nd, 3rd and 4th bending modes is the most significant factor contributing to the changes in the modal parameters for this kind of symmetrical dynamic test

    Fabrication and mechanical testing of a new sandwich structure with carbon fiber network core

    Get PDF
    The aim is the fabrication and mechanical testing of sandwich structures including a new core material known as fiber network sandwich materials. As fabrication norms for such a material do not exist as such, so the primary goal is to reproduce successfully fiber network sandwich specimens. Enhanced vibration testing diagnoses the quality of the fabrication process. These sandwich materials possess low structural strength as proved by the static tests (compression, bending), but the vibration test results give high damping values, making the material suitable for vibro-acoustic applications where structural strength is of secondary importance e.g., internal panelling of a helicopter
    corecore